nep-tur New Economics Papers
on Tourism Economics
Issue of 2014‒06‒02
one paper chosen by
Laura Vici
Universita' di Bologna

  1. “A multivariate neural network approach to tourism demand forecasting” By Oscar Claveria; Enric Monte; Salvador Torra

  1. By: Oscar Claveria (Faculty of Economics, University of Barcelona); Enric Monte (Department of Signal Theory and Communications, Polytechnic University of Catalunya); Salvador Torra (Faculty of Economics, University of Barcelona)
    Abstract: This study compares the performance of different Artificial Neural Networks models for tourist demand forecasting in a multiple-output framework. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron network, a radial basis function network and an Elman neural network. We use official statistical data of inbound international tourism demand to Catalonia (Spain) from 2001 to 2012. By means of cointegration analysis we find that growth rates of tourist arrivals from all different countries share a common stochastic trend, which leads us to apply a multivariate out-of-sample forecasting comparison. When comparing the forecasting accuracy of the different techniques for each visitor market and for different forecasting horizons, we find that radial basis function models outperform multi-layer perceptron and Elman networks. We repeat the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the effect of the memory on the forecasting results, and we find no significant differences when additional lags are incorporated. These results reveal the suitability of hybrid models such as radial basis functions that combine supervised and unsupervised learning for economic forecasting with seasonal data.
    Keywords: forecasting; tourism demand; cointegration; multiple-output; artificial neural networks. JEL classification: L83; C53; C45; R11
    Date: 2014–05
    URL: http://d.repec.org/n?u=RePEc:aqr:wpaper:201410&r=tur

This nep-tur issue is ©2014 by Laura Vici. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at http://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.